Car Failure
Car Failure Analysis
1624
Car Failures in US
21
Massachusetts
200
California
293
Texas
168
Florida
---
title: "109001014's Dashboard"
output:
flexdashboard::flex_dashboard:
orientation: rows
vertical_layout: fill
social: [ "twitter", "facebook", "menu"]
source_code: embed
---
```{r setup, include=FALSE}
#設定環境 如果無法設定套件環境,請下載套件,利用install.packages("XXX")指令
library(flexdashboard)
library(knitr)
library(DT)
library(rpivotTable)
library(ggplot2)
library(plotly)
library(dplyr)
library(openintro)
library(highcharter)
library(ggvis)
# 當圖形帶有中文,請安裝此套件
knitr::opts_chunk$set(fig.showtext=TRUE)
library(showtext)
showtext_auto()
```
```{r}
#帶入資料
data <- read.csv("C:/Users/user/Downloads./vehicle.csv")
```
```{r}
#預先指定顏色
mycolors <- c("blue", "#FFC125", "darkgreen", "darkorange")
```
Interactive Data Visualization
=====================================
Row
-------------------------------------
### Car Failure Analysis
```{r}
#顯示文字方塊
valueBox(paste("Car Failure"),
color = "warning")
```
### Car Failures in US
```{r}
#顯示文字方塊,帶入數值
valueBox(length(data$State),
icon = "fa-building")
```
### **Labor Cost**
```{r}
#顯示計量表,並指定顏色範圍。lc代表工資labor cost。
gauge(round(mean(data$lc),
digits = 2),
min = 0,
max = 350,
gaugeSectors(success = c(0, 150),
warning = c(150, 200),
danger = c(200, 450),
colors = c("green", "yellow", "red")))
```
### Massachusetts
```{r}
#顯示文字方塊,帶入特定州別條件下的數值
valueBox(sum(data$State == "MA"),
icon = 'fa-user')
```
### California
```{r}
#顯示文字方塊,帶入特定州別條件下的數值
valueBox(sum(data$State == "CA"),
icon = 'fa-user')
```
### Texas
```{r}
#顯示文字方塊,帶入特定州別條件下的數值
valueBox(sum(data$State == "TX"),
icon = 'fa-user')
```
### Florida
```{r}
#顯示文字方塊,帶入特定州別條件下的數值
valueBox(sum(data$State == "FL"),
icon = 'fa-user')
```
Row
-------------------------------
### Failures By State
```{r}
#繪製各州別的汽車故障總數長條圖
p1 <- data %>%
group_by(State) %>% #依州別分群計算
summarise(count = n()) %>% #計算總數
plot_ly(x = ~reorder(State,count,desc), #X軸為州別,並依照數量遞減排序
y = ~count, #Y軸為州別
color = "red", #顏色為紅色
type = 'bar') %>% #圖形類別為長條圖
layout(xaxis = list(title = "Failures By State"), #X軸的名稱
yaxis = list(title = 'Count')) #Y軸的名稱
p1 #呼叫圖形
```
### Top States
```{r}
#繪製汽車故障總數大於50的州佔比甜甜圈圖
p2 <- data %>%
group_by(State) %>%
summarise(count = n()) %>%
filter(count>100) %>% # 篩選總數大於50
plot_ly(labels = ~State,
values = ~count,
marker = list(colors = mycolors)) %>% #指定顏色
add_pie(hole = 0.5) %>% #中間空圈大小
layout(xaxis = list(zeroline = F,
showline = F,
showticklabels = F,
showgrid = F),
yaxis = list(zeroline = F,
showline = F,
showticklabels=F,
showgrid=F))
p2
```
Map
========================================
### Map
```{r}
#繪製汽車故障州別(State)的地圖
car <- data %>%
group_by(State) %>%
summarize(total = n())
car$State <- abbr2state(car$State)
highchart() %>%
hc_title(text = "Car Failures in US") %>%
hc_subtitle(text = "Source: Vehiclefailure.csv") %>%
hc_add_series_map(usgeojson, car,
name = "State",
value = "total",
joinBy = c("woename", "State")) %>%
hc_mapNavigation(enabled = T)
```